矿业科技创新面临的问题 近年来,矿业科技创新虽然取得了一定成效,促进了矿业行业的发展,但依然存在一些问题,在一定程度上制约了行业发展的步伐。 ——矿业行业重大技术创新相对不足。在全球范围内,矿业行业在重大技术创新方面落后于其他行业。虽然生产技术已实现现代化,但这些变化并未从根本上使矿业行业发生颠覆性变革。矿业行业技术创新的主要驱动因素包括:减少工人的健康和安全风险;降低运营成本及提高矿产产能;降低矿产开发成本;劳动力老龄化加速趋势下退休率的上升和随之而来的工资上涨;降低技术开发成本;环境、社会和治理标准下对矿业行业绿色发展的迫切要求。这些都需要不断加大重大技术创新的力度,并将其切实地应用到矿山日常生产运营中。 ——自动化采矿设备尚未得到广泛应用。自动化采矿设备是矿业行业最重要的技术创新领域之一。尽管在某些领域的技术已经成熟,但整体仍处于发展阶段且普及程度较低。自动化采矿设备包括露天采矿设备和地下采矿设备,其中较为成熟的是露天矿的自动化运输设备。根据原始设备制造商提供的系统,各矿山可以实现运输设备不同程度的自动化,分为指导性作业、遥控作业、半自动化作业和全自动化作业4个阶段。无论是实现何种程度的自动化,采矿作业都会变得更加一致、可控,在保障人员和机械设备安全的同时能够提高产能。自动化运输系统的相关技术已被运用于露天矿和地下矿的相关作业中。然而,全自动化在地下矿的应用仍不及露天矿。截至目前,真正的人工智能尚未应用到自动化采矿中,但这将是未来的机遇。 ——数字技术在全面提升选厂运营优化方面尚待深化。目前,选厂中人工智能的主要用途是检测异常。下一项主要技术创新目标是建立选厂的数字孪生模型,以作为完全动态模型,以及应用人工智能来完全自动地控制作业流程。人工智能系统在最开始的时候需要花费较长的时间来学习如何加工矿物,以及获取和处理数据并改进算法。一旦系统开发完成,则人工智能系统将被集成到实时操作中,并以咨询模式对工厂进行运营,向操作人员提出建议。在经过全面测试后,人工智能系统将能够完全自动地运行工厂。人工智能选厂将以最佳运营状态运行,以实现更稳定的生产,更低的安全或环境风险,以及对矿石特性或工艺参数的任何变化的更迅捷响应。人工智能将优化工厂运营的不同环节,以提高矿物加工的效率、回收率和盈利能力,还可以根据实际磨损和预测的组件磨损来预见性地维护设备。 矿业科技创新发展的趋势 尽管目前对智能矿山还没有统一的定义,但其主要目的是采用高度工程化的技术,并结合人工智能、物联网和大数据等新兴关键技术的应用,实现数字化连接和各方面的运营优化,是矿业科技创新发展的趋势。 ——智能化是矿业行业高质量发展的必然之路。尽管对智能矿山没有统一的定义,但主要目的是采用高度工程化的技术,并结合人工智能、物联网和大数据等新兴关键技术的应用,实现数字化连接和所有方面的运营优化,可以总结为“七化”,即数字化、自动化、智能化、机械化、集约化、电气化、少(无)人化。国际顶尖矿业企业,如力拓、必和必拓、英美资源集团、加拿大黄金公司、加拿大泰克资源公司、南非金田公司、美国纽蒙特矿业公司、澳大利亚雷索卢特矿业公司等,已将智能矿山理念作为其企业重要发展战略之一,在利用物联网、大数据、人工智能、5G、边缘计算、虚拟现实等前沿技术促进企业高质量发展及提升企业综合竞争力和可持续发展能力方面走在了行业前沿。 ——数字化有望促进选矿相关领域的跨越式发展。选矿工艺技术的主要发展趋势包括持续机械化、选厂规模的扩大以及信息技术在过程控制中的应用。数字化为矿物加工领域的变革提供了可能,选厂可以在人工智能的帮助下运营,从而实现动态控制和持续优化。美卓公司的首席数字官JaniPuroranta提出了选厂数字化的两个关键领域:先进过程控制和预见性维护。先进过程控制是一种整体方案,既可以识别出工厂的限制条件,也可以利用软件在每次设定点自动做出正确决定并执行操作来实现接近限制条件的稳定生产。通过在监管控制流程顶端部署专家系统可以实现这一目标。另一方面,预见性维护可确保设备最长的正常运行时间和最大利用率。在这个概念中,机器学习算法和人工智能被用于检测和预测机器的故障或损坏,识别对正常作业模式的偏离,以及偏离最佳作业的程度。自由港迈克墨伦和麦肯锡通过建立选矿的人工智能模型,结合专家意见和优化过程中不断产生的全新数据,从而不断进行模型优化,并在人工智能模型的帮助下优化选矿流程,最终将其位于美国亚利桑那州的Bagdad选厂的铜产量提高了10%。 ——探明隐伏矿体是矿业行业可持续发展的重要方向。随着新矿床发现率的持续下降,矿产勘探企业面临着越来越大的技术风险和运营挑战。现今探明的大多数矿山都位于已在地表或近地表出露的矿体。尽管新的勘探技术能够探明一些偏远、复杂且通常低品位的矿床,但对于新一代矿山的勘探,在经济可行的条件下,越来越需要探明位于无矿盖层下方的深部矿体,从而取得勘探方面的更大成果。此外,需要利用技术创新和低创性技术,以快速且对环境影响较小的方式评价潜在的矿床。这意味着圈定更精准的靶区,更有效地处理岩心数据,从而减少钻探量。 ——地质数据的高级分析与评估将成为矿山建设运营的基础。实践证明,一旦实现了可靠的数据采集,则岩土工程数据的分析和评估将成为矿山工程设计的基础。钻井、取样、地球化学和地球物理方法的增加产生了大量数据。得益于计算机处理能力的增强,能够处理的数据量也大幅上升。地质学家们现在能够在三维空间里处理大量数据并将其可视化。三维地质数据的整合和可视化为理解数据空间关系创造了全新的价值。数学算法、地质统计学、模拟和其他最先进应用程序的发展都支撑了地球科学建模工作。然而,随着关键数据存储于多个软件平台中,评估所有的变量的难度大幅上升,导致业内地质数据的复杂性不断增加。为了更好地预测矿产资源潜力,如今矿业行业已经转向自动分类技术或机器学习,相比以往的手动方式能够更加深入地查询并分析数据。这种类型的分析适用于以常规手段获取的大规模、多波段和多元素地球科学数据集。然而,在区域勘探条件下,机器学习的实际应用面临着重大挑战。其中的主要问题是数据覆盖的不均匀、数据类型的不同、模型分辨率的选择、训练点的缺乏和可变性以及在不同观测尺度上表现出来的不同特征。当尝试使用一些可用的常见机器学习算法来构建代表性的“预测”模型时,需要特别注意以上因素。□ (作者单位:中国地质调查局国际矿业研究中心、中国地质调查局地学文献中心)
|